首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11279篇
  免费   959篇
  国内免费   107篇
工业技术   12345篇
  2024年   19篇
  2023年   222篇
  2022年   333篇
  2021年   733篇
  2020年   651篇
  2019年   820篇
  2018年   936篇
  2017年   885篇
  2016年   857篇
  2015年   514篇
  2014年   871篇
  2013年   1256篇
  2012年   794篇
  2011年   884篇
  2010年   595篇
  2009年   487篇
  2008年   301篇
  2007年   213篇
  2006年   183篇
  2005年   126篇
  2004年   116篇
  2003年   69篇
  2002年   64篇
  2001年   32篇
  2000年   33篇
  1999年   28篇
  1998年   34篇
  1997年   20篇
  1996年   26篇
  1995年   27篇
  1994年   13篇
  1993年   22篇
  1992年   13篇
  1991年   19篇
  1990年   20篇
  1989年   17篇
  1988年   7篇
  1987年   11篇
  1986年   9篇
  1985年   11篇
  1984年   16篇
  1983年   18篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   8篇
  1978年   5篇
  1976年   4篇
  1974年   2篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
通过试验和数值分析对工字形梁和箱形柱焊接连接的性能进行探讨,以获得加劲肋和柱翼缘厚度对连接耗能性能的影响。采用有限元法对试验构件进行了建模和分析,并将结果与全尺试验对比。考虑了各类加劲肋的影响,包括:柱加劲肋、侧向加劲肋、翼缘顶部和底部加劲肋。评测了各种加劲肋在塑性变形控制和连接耗能性能方面的贡献。  相似文献   
992.
在对连续加劲铝板屈曲和极限强度的敏感性研究基础之上,对压力作用下的铝板进行了深入研究。开发了一个经验公式,用于预测海洋工程中采用焊接加劲铝板在平面内轴压和各种侧向压力作用下的极限抗压强度。极限抗压强度的计算利用了一些的铝板敏感性分析的相关数据,推导出来的公式中含有两个参数,分别是板长细比和柱(加劲肋)长细比。推导过程中也用到了回归分析。公式考虑了焊接对初始缺陷和热影响区的影响。  相似文献   
993.
The nonlinear static pushover analysis technique is mostly used in the performance‐based design of structures. However, the pushover analysis with load distributions of Federal Emergency Management Agency (FEMA) loses its accuracy in estimating the seismic responses of long‐period structures where higher mode effects are important. Recently, modal pushover analysis (MPA) has been proposed to consider these effects. Hence, FEMA load patterns and MPA are evaluated in the current study and compared with inelastic response history analysis. These approximate procedures are applied to medium‐rise (10 and 15 stories) and high‐rise (20 and 30 stories) buildings; advantages and limitations of them are elaborated. It is shown that MPA procedure presents significant advantage over FEMA load distributions in predicting story drifts. MPA is able to compute hinge plastic rotations better than FEMA load distributions at upper floor levels of high‐rise buildings due to considering higher mode effects by this procedure, but both are unsuccessful in predicting hinge plastic rotations with acceptable accuracy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
994.
A novel and simple coplanar waveguide fed compact antenna is introduced in this paper. The antenna structure combines the advantages of CPW with those of the broadband antenna and simplifies the structure of the antenna by reducing the number of metallization level to construct uni-planar antenna. Prototype of the proposed antenna have been constructed and studied experimentally. The measured results agrees well with the simulated prediction and shows a broad bandwidth of 6 GHz ranging from 3.5 GHz to 9.5 GHz with VSWR ≤2 (return loss ≤−10 dB), which is equivalent to 92.3% impedance bandwidth centered at 6.5 GHz. The proposed antenna shows stable radiation characteristics, gain and axial ratio of less than 1 dB over the whole operating bandwidth. Furthermore, an extensive parametric study was performed to realize the relationship between the resonance frequencies of the broadband antennas and different parameters which is helpful for advancement of the antenna design.  相似文献   
995.
A risk-based evaluation is performed for meeting future water demands in the Brahmaputra Floodplain Area within Bangladesh (BFA). This evaluation is carried out using three risk-based performance indicators: reliability, resiliency and vulnerability. The vulnerability indicator has been redefined incorporating the aspect of a supply failure. The analysis includes the impacts of climate change on both water demands and resources, and the generation of synthetic flows of the Brahmaputra River using time series models. The simulated values of the indicators reveal that the expected demand of the BFA up to the year 2050 can be supplied with the proposed Brahmaputra Barrage inside Bangladesh under the ‘no change’ in climatic condition, provided that the groundwater remains usable. However, if groundwater becomes unusable due to widespread arsenic contamination and/or a climate change occurs, it would not be possible to meet the future water demand of the region with high reliability, moderate resiliency and low vulnerability.  相似文献   
996.
In this work, TiO2 and ZnO were incorporated successfully into a MIL-53(Al) metal–organic framework (MOF) to form nanocomposites via a facile post-modification technique. The hybrid MIL-53(Al)@TiO2 and MIL-53(Al)@ZnO were characterized by several characterization tests. The X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and field-emission scanning electron microscopy (FE-SEM) analyses showed evidence of the successful incorporation of TiO2 and ZnO within the MIL-53(Al) framework. The thermal gravimetric analysis (TGA) analysis demonstrated the excellent thermal stability of MIL-53(Al)@TiO2 and MIL-53(Al)@ZnO, while diffuse reflectance spectroscopy (DRS) determined the direct optical band gaps of MIL-53(Al)@ZnO and MIL-53(Al)@TiO2 to be 3.24 and 3.34 eV, respectively. The composites were also tested for the photocatalytic degradation of diclofenac (DCF) as a micropollutant. The DCF degradation efficiency of the photocatalysts was ranked in the following order: MIL-53(Al)@TiO2 > MIL-53(Al) > TiO2 > ZnO > MIL-53(Al)@ZnO. The incorporation of TiO2 enhanced the optical properties of MIL-53 (Al), which was confirmed with the superior photodegradation efficiency of MIL-53(Al)@TiO2 (>85% in 2 h) as compared to the pristine MIL-53(Al) (around 80% in 2 h). The improvement in the photodegradation of the hybrid-MOF is mostly associated with the possible dual function of the adsorption and photodegradation mechanisms. The reusability of MIL-53(Al) and its composites was inspected over 3 cycles of photodegradation experiments with DCF. The photocatalytic activity of MIL-53(Al)@TiO2 remained unchanged (>90%), while for MIL-53(Al) and MIL-53(Al)@ZnO a slight drop was observed over three cyclic degradation experiments. Fluorescence measurements revealed that the hydroxyl radical is an important reactive oxygen species produced by all the photocatalysts that aid in the photodegradation of DCF. Furthermore, the kinetic modelling of the photoreaction identified a second-order kinetics for all catalysts. Experiments with scavengers showed that hydroxyl radicals played a major role in the photocatalytic process, and it was found that only 2 h of treatment was sufficient to obtain a considerable chemical oxygen demand (COD) reduction of 58%.  相似文献   
997.
In this paper, two Zigler-Natta catalysts (ZNCs) were used to synthesize a commercially available linear low-density polyethylene (LLDPE), widely used in the packaging industry, on an industrial scale. The catalysts differ only in their ability to distribute comonomers between short and long chains. Both catalysts were fully characterized in the first section, and two similar ethylene/1-butene copolymers were made using them. Afterward, the produced copolymers were fully characterized using different techniques; namely, differential scanning calorimetry (DSC), successive self-nucleation and annealing (SSA), oxygen induction time (OIT), melt flow index (MFI), rheometric mechanical spectroscopy (RMS), and a wide range of mechanical experiments. It was revealed that while the presence of comonomers in short chains can reduce their resistance against oxidation (by more than 30%) and can cause a dramatic change in friction coefficients (by more than 20%), some of the other main mechanical properties of the made copolymers were independent of comonomer distribution between long and short chains. In addition, it was shown that ethylenic copolymers' strain hardening modulus (SHM) takes advantage of the homogenous distribution.  相似文献   
998.
In this research, polyvinyl chloride (PVC) with excellent shape-memory effects is 4D printed via fused deposition modeling (FDM) technology. An experimental procedure for successful 3D printing of lab-made filament from PVC granules is introduced. Macro- and microstructural features of 3D printed PVC are investigated by means of wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) techniques. A promising shape-memory feature of PVC is hypothesized from the presence of small close imperfect thermodynamically stable crystallites as physical crosslinks, which are further reinforced by mesomorphs and possibly molecular entanglement. A detailed analysis of shape fixity and shape recovery performance of 3D printed PVC is carried out considering three programming scenarios of cold (Tg −45 °C), warm (Tg −15 °C), and hot (Tg +15 °C) and two load holding times of 0 s, and 600 s under three-point bending and compression modes. Extensive insightful discussions are presented, and in conclusion, shape-memory effects are promising,ranging from 83.24% to 100%. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state-of-the-art shape-memory materials library for 4D printing, and provide pertinent results that are instrumental in the 3D printing of shape-memory PVC-based structures.  相似文献   
999.
Herein, a simple melt-blending method is utilized to disperse of halloysite nanotubes (HNTs) in polystyrene/polyolefin elastomer (PS/POE) blends. Based on morphological studies, the PS/POE/HNT nanocomposite containing up to 3 phr HNTs shows excellent nanofiller dispersion, while those filled with 5 phr HNTs exhibit nanofiller aggregation. To overcome the nanofiller aggregation issue, the polypropylene-grafted-maleic anhydride (PP-g-MA) compatibilizer is added to the PS/POE/HNT nanocomposite, which results in improved mechanical properties for the nanocomposite sheets. Furthermore, the addition of compatibilized HNTs to the PS/POE blends leads to decreased O2 and N2 gas permeabilities. Besides, incorporating POE, HNTs, and PP-g-MA leads to a decrease in water vapor transmission of PS. In the end, the experimentally-determined mechanical properties and gas permeabilities of the nanocomposite sheets are compared to those predicted by prevalent theoretical models, revealing a good agreement between the experimental and theoretical results. Molecular-dynamics simulations are also carried out to calculate the gas diffusion coefficients in the different sheets to further support the experimental findings in this study. Overall, the PS/POE/HNT/PP-g-MA nanocomposite sheets fabricated in this work demonstrate excellent mechanical and gas barrier properties; and hence, can be used as candidate packaging materials. However, the strength of the resulting PS/POE blend may be inferior to that of the virgin PS.  相似文献   
1000.
In this study, biopolymer chitosan is presented as a template for synthesizing and shaping the mesoporous γ-Al2O3 macrospheres. This porous γ-Al2O3 granule has a high surface area (310 m2/g), high pore volume (.6148 cm3/g), and pore diameter between 2 and 10 nm. The full factorial design based on a mathematical model was implemented to study the acid concentration, chitosan amount, ammonia concentration, and aging time affecting the responses (Brunauer–Emmett–Teller surface area and pore volume). Predicted responses were found to be in satisfactory agreement with experimental values (R2 = .9580 and .9109, respectively). The adequacy of the model was examined by analyzing the residual distribution plots and Pareto graph. X-ray diffraction, scanning electron microscopy (SEM), thermogravimetric analysis, and N2 adsorption/desorption techniques are employed to characterize the structure of the prepared γ-alumina sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号